Distributed Resource Discovery on PlanetLab with SWORD

http://www.swordrd.org/

David Oppenheimer, Jeannie Albrecht
David Patterson, Amin Vahdat
UC Berkeley / UC San Diego

First Workshop on Real, Large Distributed Systems
December 5, 2004
Introduction

- Increasing number of large-scale distributed systems that run across wide-area networks
 - content distribution networks
 - peer-to-peer storage
 - distributed games
 - Grid applications

- Applications have minimum resource requirements to achieve desired QoS
 - **compute-intensive**: spare CPU, physical mem, disk space
 - **network-sensitive**: positions in network topology near potential users, good network connections among nodes, “interesting” network locations
 - **hybrid**: all of the above
Deployment platforms are heterogeneous

- **rapidly-changing** attributes
 - per-node spare CPU, memory, disk space
 - inter-node latency, available bandwidth, loss rate
- **slowly-changing** attributes
 - due to federation or incremental deployment
 - hardware arch., OS, software installed, admin. policies, ...

At deployment time, only a subset of nodes will meet the application’s needs

Goal: pick subset of nodes to run on that meet the application’s requirements

- integrated resource discovery and service placement
Example query

Group NA
NumMachines 16
Required Load [0, 2]
Preferred Load [0, 1], penalty 90
Required FreeDisk [500, MAX]
Preferred FreeDisk [1000, MAX], penalty 90
Required OS ['Linux']
Required AllPairs Latency [0, 20]
Preferred AllPairs Latency [0, 10], penalty 90
Required AllPairs BW [0.5, MAX]
Preferred AllPairs BW [1, MAX], penalty 2
Required Location ['NorthAmerica', 0, 50]

Group Europe
NumMachines 16
Required Load [0, 2]
Preferred Load [0, 1], penalty 90
Required FreeDisk [500, MAX]
Preferred FreeDisk [1000, MAX], penalty 90
Required OS ['Linux']
Required AllPairs Latency [0, 20]
Preferred AllPairs Latency [0, 10], penalty 90
Required AllPairs BW [0.5, MAX]
Preferred AllPairs BW [1, MAX], penalty 2
Required Location ['Europe', 0, 50]

InterGroup
Required OnePair BW NA Europe [3, MAX]
Preferred OnePair BW NA Europe [5, MAX], penalty 2
Resource monitors collect information about resources.

Populate query processor with measurements.

User query

Candidate nodes

Optimizer

Optimal group and total penalty accrued

Group 1

Group 2
PlanetLab deployment

- Has been running continuously on 200+ PlanetLab nodes for about six months
- Extensible set of measurements sent every two minutes
 - Ganglia host measurements
 - Trumpet end-to-end host tests
 - slicestat information via CoTop
 - Vivaldi network coordinates
- Query processor implemented on top of Bamboo
- Two ways to issue queries
 - web page
 - point command-line client at any SWORD node
Latency vs. workload rate

Median Query Latency (ms)

Total Queries per Minute

Central-1

DHT~200

Central-2
1. Centralized vs. P2P

- “Infrastructure” distributed testbeds (like PlanetLab) tend to be “small”
 - 100s-1000s; not 10,000s-100,000s
- As a result, centralized solutions may provide sufficient performance (and lower implementation complexity)
- Design suggestion: evaluate centralized solution before embarking on P2P implementation
 - performance for expected workload
 - availability and disaster tolerance requirements
 - bandwidth requirements
 - implementation effort, given desired features
 - debugging effort
2. Simulation vs. emulation vs. PlanetLab

- I have an idea for a new distributed architecture for
 - Google
 - Akamai
 - Kazaa
 - a vigilante anti-spam screensaver network
 - ...

- How do I evaluate it?
 - how integrate PlanetLab into evaluation strategy?
2. Simulation vs. emulation vs. PlanetLab

<table>
<thead>
<tr>
<th>Property</th>
<th>Fast network simulator</th>
<th>Emulated nodes & net</th>
<th>PlanetLab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network topo. and link char.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Node effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Workload</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faults</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproducibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment management</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Simulation vs. emulation vs. PlanetLab

<table>
<thead>
<tr>
<th>Property</th>
<th>Fast network simulator</th>
<th>Emulated nodes & net</th>
<th>PlanetLab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td>1000s</td>
<td>~1000</td>
<td>~500</td>
</tr>
<tr>
<td>Network topo. and link char.</td>
<td>Flexible, latency only</td>
<td>Flexible, all effects</td>
<td>Hard-wired, all effects</td>
</tr>
<tr>
<td>Node effects</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Workload</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operator actions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faults</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproducibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment management</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Simulation vs. emulation vs. PlanetLab

<table>
<thead>
<tr>
<th>Property</th>
<th>Fast network simulator</th>
<th>Emulated nodes & net</th>
<th>PlanetLab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td>1000s</td>
<td>~1000</td>
<td>~500</td>
</tr>
<tr>
<td>Network topo. and link char.</td>
<td>Flexible, latency only</td>
<td>Flexible, all effects</td>
<td>Hard-wired, all effects</td>
</tr>
<tr>
<td>Node effects</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Workload</td>
<td>Flexible</td>
<td>Flexible</td>
<td>Flexible & Realistic</td>
</tr>
<tr>
<td>Operator actions</td>
<td>No</td>
<td>Flexible</td>
<td>Realistic</td>
</tr>
<tr>
<td>Faults</td>
<td>Net only</td>
<td>Flexible</td>
<td>Realistic</td>
</tr>
<tr>
<td>Reproducibility</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experiment management</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2. Simulation vs. emulation vs. PlanetLab

<table>
<thead>
<tr>
<th>Property</th>
<th>Fast network simulator</th>
<th>Emulated nodes & net</th>
<th>PlanetLab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale</td>
<td>1000s</td>
<td>~1000</td>
<td>~500</td>
</tr>
<tr>
<td>Network topo. and link char.</td>
<td>Flexible, latency only</td>
<td>Flexible, all effects</td>
<td>Hard-wired, all effects</td>
</tr>
<tr>
<td>Node effects</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Workload</td>
<td>Flexible</td>
<td>Flexible</td>
<td>Flexible & Realistic</td>
</tr>
<tr>
<td>Operator actions</td>
<td>No</td>
<td>Flexible</td>
<td>Realistic</td>
</tr>
<tr>
<td>Faults</td>
<td>Net only</td>
<td>Flexible</td>
<td>Realistic</td>
</tr>
<tr>
<td>Reproducibility</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Experiment management</td>
<td>Easy</td>
<td>Medium</td>
<td>Hard</td>
</tr>
</tbody>
</table>
2. Simulation vs. emulation vs. PlanetLab

- PlanetLab deployment complements rather than replaces traditional evaluation approaches

- Design suggestion
 - deploy your system on PlanetLab
 - use traces of workload, contention, and failures from PlanetLab to drive simulation or emulation
 - best of both worlds
Conclusion

- Integrated resource discovery and placement for services, computations, and experiments
 - pick subset of machines that meet your app’s requirements
- Query semantics specialized for resource discovery
 - topology of interconnected groups
 - penalty functions
- Distributed (DHT) and centralized implementations
- Small centralized cluster superior to DHT-based
 - but DHT-based provided reasonable performance and high availability
- PlanetLab’s realism complements flexibility and reproducibility of traditional evaluation approaches.

Please use SWORD!
Distributed Resource Discovery on PlanetLab with SWORD

http://www.swordrd.org/

David Oppenheimer, Jeannie Albrecht
David Patterson, Amin Vahdat
UC Berkeley / UC San Diego

First Workshop on Real, Large Distributed Systems
December 5, 2004